CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Learning Objectives

At the end of this chapter, student should be able to:

v

AN N NN

Use pre-defined functions: (sqrt(), abs(), pow(), toupper(), tolower(), setw(), setprecision())
Build independent functions or user-defined functions

Define function’s data type: void, int, float, double, char, char*

Understand the scope of global and local-variables

Learn how to use function with parameter (value and reference)

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

A. Introduction to Function

e As programs get longer and complicated, it is common to group the program statements into its

interrelated modules or segments or subprograms.

e Each module or segment will only perform a particular task. The module or segment of codes is

referred to as function.

1. Modular Programming

Modular programming is a way of breaking one module of program into sub-module of
program in which each module will performs a particular task only.

For example, a program may contain a module to perform each of the three main tasks in a
program; that is input, processing and output.

In C++, modules are called functions.

Some functions are predefined (built-in — and of course we have to include some necessary
pre-processor directive to support that pre-defined function), which are referred to as
library functions, and others can be programmer-defined.

As we have seen, each C++ program must contain main function, and it may also contain any

number of additional functions which we are going to learn how to write it.

2. Function

A function is a mini-program that performs a particular task. Each function may include its
own variables and its own statements, just like writing the main function. This mini-program

can be compiled and tested independently.

1. Benefit of Using Functions
i The main program is simplified where it will contain the function call
statements. By doing that planning, coding, testing, debugging, understanding
and maintaining a computer program will be easier.
ii. The same function can be reused in another program, which will prevent code
duplication and reduce the time of writing the program.
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program calculates and displays the wages of an employee based on the number of hours

worked and the hourly rate of pay.

1. Example of program not using function

Problem definition
Input: name, hours worked, hourly rate
Process: calculate wages

Output: wages

Algorithm design
Get Input

Read name, hours_worked, hourly_rate
Calculate wages

Wages = hours_worked * hourly_rate
Display Output

Print wages

Program coding

#include <iostream.h>
//To display greeting and calculate wages without using function

void main()

{
int hoursWorked;
float hourlyRate;
float wage;
char name[25];

cout << “Please enter name ”’;

cin.getline(name, 25);

cout << “Hello ” << name << “. Welcome to this program.” << endl;
cout << “Enter the number of hours worked :”;

cin >> hoursWorked;

cout << “\nEnter the hourly pay rate :”;
cin >> hourlyRate;

wage = hourlyWorked * hourlyRate;

cout << “\nThe wage is :RM” << wage << endl;

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Sample output

Please enter your name: Haizat

Hello Haizat. Welcome to this program.
Enter the number of hours worked: 8
Enter the hourly pay rate: 12.5

The wages is : RM100.0

After using function
e The above program is modified by applying functions to it. Two functions, calwWages() and

greeting() are added.

Algorithm design
main()
greeting()
Input hours worked, hourly rate
calcWages()
Display wages
greeting()
Input name
calcWages()

Calculate wages

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Program coding

#include <iostream.h>
//To display greeting and calculate wages without using function

void calWages(int, int); //function prototype
void greeting();

void main()

{
int hoursWorked;
float hourlyRate;
greeting();
cout << “Enter the number of hours worked :”’;
cin >> hoursWorked;
cout << “\nEnter the hourly pay rate :”;
cin >> hourlyRate;
calWages(hoursworked, hourlyRate);
}
void calWages (int hours, int rate)
{
float wage = hours * rate;
cout << “\nThe wage is :RM” << wage << endl;
}
void greeting()
{
char name[25];
cout << “Please enter name ”;
cin.getline(name, 25);
cout << “Hello ” << name << “. Welcome to this program.” << endl;
}
Sample output

Please enter your name: Haizat

Hello Haizat. Welcome to this program.
Enter the number of hours worked: 8
Enter the hourly pay rate: 12.5

The wages is : RM100.0

Explanation
e calWages() —only performs the calculation of wages

e greeting() —display the greeting

e Each function does specific task, thus making it easier for tracing errors or debugging

process.

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

3. Predefined functions

e Predefined or built-in functions are functions used by the programmers in order to speed up
program writing.

e Programmers may use the existing code to perform common tasks without having to rewrite
any code.

e These functions are predefined by the producer of a compiler, (C++) and are stored in the
header files (.h files) called libraries

e |n order to for a program to use a pre-defined function, the appropriate library file must be

included in the program using the #include directive.

Syntax form

#tinclude <header file name>

Example
To use the getline(), a program must include the directive
#include <string.h>
Some commonly used header files are iostream.h, iomanip.h, string.h, char.h (or

ctype.h), math.h, and stdlib.h.
a. iostream.h
e iostream.h is a header file for input/output stream. The most commonly used built-in

functions for input/output are get () and put().

Commonly used functions

Name Description
get() for console input (keyboard) or type char
put() for console output (screen) of type char

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program shows that when the input/output stream (cin.cout) are used, the

header file iostream.h is included at the very beginning of the program file.

#include <iostream.h>
void main()
{
char ch;
cout << “Please enter a character: ”;
cin.get(ch);
cout << “\nThe character is * << put(ch);
}
Sample output

Please enter a character: a

The character is a

b. iomanip.h
e This header file defines a collection of functions to manipulate input and output data.

e Some of the commonly used functions are given below.

Commonly used functions

Name Description

setw(x) Set field width to x

setfill(x) Set the fill character with x

setprecision(x) Set the floating point precision to x
setiosflags(ios::fixed) Display floating point values in decimal notation
setiosflags(ios::left) Left justify output

setiosflags(ios::right) Right justify output
setiosflags(ios::showpoint) | Display a decimal point

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program displays the integer, string, and floating point values according to the

predetermined output setting.

#tinclude <iostream.h>
#include <iomanip.h>

void main()

{
int x = 2345;
cout << “|” << setw(8) << setiosflags(ios::left)
<< X << “|” << endl;
cout << “|” << setfill(*’) << setw(8)
<< “HELLO” << “|” << endl;
cout << “|” << setw(8) << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2) << 86.2 << “|” << endl;
cout << “|” << 5 << “|” << endl;
}
Output
|2345 |
|HELLO*** |
|86.20 ***|
El
c. string.h
e This header file contains several string manipulation functions. Some of the commonly
used functions are shown below.
Commonly used functions
Name Description
strcmp(sl, s2) Compares one string to another
strcpy(sl, s2) Copies one string to another
strlen(s) Calculates the length of a string
strcat(sl, s2) Appends one string to another
8
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program accepts two full names; checks whether both names are equal, edit

the names, get the length of the first name and concatenate two names together.

#include <iostream.h>
#include <string.h>
void main()
{
char firsName[30], secName[30];
cout << “Enter full name: ” << endl;
cin.getline(firstName, 30);
cout << “Enter another full name: »” << endl;
cin.getline(secName, 30);
if (strcmp(firstName, secName) == @)
cout << “The names are the same” << endl;
else
cout << “The names are different” << endl;
strcpy(firstName, “Marissa”);
cout << “First name is now »” << firstName << endl;
cout << “The length of the first name is ”
<< strlen(firstName) << endl;
strcat(firstName, “Nurdia”);
cout << “First name is now ” << firstName << endl;
}
Output

Enter full name: Nur Saidah

Enter another full name: Nurul Azua
The names are different

First name is now Marissa

The length of the first name is 7
First name is now Marissa Nurdia

d. char.h (ctype.h)
e This header file contains declarations of several character handling functions. Some of

the most commonly used functions are given below.

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Commonly used functions

Name Description

toupper(c) Converts character c from lowercase to uppercase letter
tolower(c) Converts character c from uppercase to lowercase letter
isupper(c) Return TRUE if c is an uppercase letter

islower(c) Return TRUE if c is a lowercase letter

isdigit(c) Return TRUE if c is digit

isalpha(c) Return TRUE if c is an alphanumeric character
isspace(c) Return TRUE if c is a space character

Example

The following program accepts a character, checks whether the character is an uppercase or
a lowercase. If it is an uppercase, the lowercase of the character is then displayed and vice

versa.

#include <iostream.h>
#include <ctype.h>

void main()

{
char letter;
cout << “Enter a character: ”;
cin >> letter;

if(isalpha)
{ if (isdigit(letter))
{

}
else if (isupper(letter))

{

cout << “The character is a digit” << endl;

cout << “The character is an uppercase” << endl;
cout << “The lowercase is ”
<< (char) tolower(letter) << endl;

else
cout << “The character is a lowercase” << endl;

cout << “The uppercase is ”
<< (char)toupper(letter) << endl;

}

else if (isspace(letter))
{

}

cout << “The character is a space” << endl;

10

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 5: Function

Output

Enter a character: Z

The lowercase is z

The character is an uppercase

e. math.h

e This header file contains declarations of several mathematic functions. Some of the

most commonly used functions are given below.

Commonly used functions

Name Description

pow(x, y) Return x raised to the power of y
sqrt(x) Square root of x

ceil(x) Smallest integer >= x

floor(x) Largest integer <= x

sin(x) Sine of x (x is in radians)

cos(x) Cosine of x (x is in radians)

tan(x) Tangent of x (x is in radians)
asin(x) Arc sine or sin™ of x

acos(x) Arc cosine or cos* of x

atan(x) Arc tangent or tan™ of x

log(x) Natural logarithm of x or In(x), x>0
sinh(x) Hyperbolic sine of x

cosh(x) Hyperbolic cosine of x

tanh(x) Hyperbolic tangent of x

log1e(x) Common log (base 10) of x or Ig(x)
exp(x) e raise to the x power or e*
fabs(x) Absolute value |x|

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

11

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program accepts a number, gets the square root of the number and multiplies

the number by using the sqrt() and pow().

#include <iostream.h>
#include <math.h>
void main()
{
double number;
cout << “Enter a number: *;
cin >> number;
cout << “The square root of ” << number << “ is ”
<< sqgrt(number) << endl;
cout << number << “ raised to the power of 2 is ”
<< pow(number,2) << endl;
}
Output

Enter a number: 9
The square root of 9is 3
9 raised to the power of 2 is 81

f. stdlib.h
e This header file contains declaration of several miscellaneous (mixed) functions. Some

of the most commonly used functions are given below.

Commonly used functions

Name Description
abs (1) Converts to the absolute value of i
rand() Generate a random positive integer between 0 and

RAND_MAX(32767)

srand(seed) Initialize random number generator where seed

represent the starting point for the rand function

12

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

The following program accepts a value of seed and generates five random values

#include <iostream.h>
#include <stdlib.h>
#include <iomanip.>

void main()
{
unsigned seed;
float randValue;
cout << “Enter the value of seed ”;
cin >> seed;

srand(seed); //generate the first seed value
cout <<\n5 generated numbers are: * << endl;
for (int i=1; i<=5; i++)
{
randValue = rand();
cout << setw(8) << setfill(“#’)<< randValue << endl;

Output

Enter the value of seed: 10
5 generated random numbers are:

HHH##3463
###30957
###10345
###10368
H####8444

4. Independent functions

Programmer are able to create their own functions since the built-in function in C++ libraries
are limited to perform other programming tasks.

Independent function or also known as programmer-defined are functions whose task are
determined by the programmer and defined within the program in which the function is
used.

The function definitions can be written in the same file as main() or compiled
independently in separate files.

To compile separately, the file that contains the definitions must be included and the

following syntax form is used:
13

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Syntax form
#include ‘“<filename>.cpp”
Example

#include “myfile.cpp”

Program structure

The overall program structure when using the independent functions is shown below:

#include <iostream.h>
function prototype declarations;

void main()

{

variable declarations;
statements [including function calls];

}

function definition(s)

{
}

statements;

e In order to use the independent function, a programmer must satisfy three requirements:
i Function prototype declaration
ii. Function call

iii. Function definition

5. Function Prototype Declarations

e All functions must be declared before they can be used in a program.

e Placed just before the main program and sometimes at the beginning of the main program,
a function declaration specifies:
i. The name of the function
ii. The order and type of parameters
iii. The return value

e The purpose of function prototype declaration allows the compiler to check for the
existence of the function, the parameter list and the return type is correct.

e The syntax for the independent function prototype declaration is given below:

14

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

C++ syntax form

returnType functionName (type parameter_list);

Explanation
returnType
a. Indicates the type of value that the function will return
b. The return value may be of any valid data type:
int, float, double, char, long and void

c. void is used when a function does not return any value to the calling program

functionName
a. Isthe name of function
b. It can be any names but the naming convention must follow the rules in naming the

identifier

type parameter_list

a. Tells the calling function what type of data value the parameter will receive when the
function is called

b. Tells the calling function the order of the values to be transmitted to the called function

c. Ifit contains more than one data type, parameter_list must be separated by comma(s)

d. Parameter names are optional

e. Parameter_list is also known as arguments

Function prototype examples

The following are examples of the function prototype:
void display();
int findSum(int, int);

float swap(float, float, int, char);

15

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Explanation

The following explains the declaration of the prototype:

a.

void display();
Declares that function display() does not receive any argument and does not return any

argument to the calling function

int findSum(int, int);
Declares that the function findSum()expects to receive two integer argument and return

value to the calling function with data type integer.

float swap(float, float, int, char);
Declares that the function swap() requires four arguments consisting of two floating-points
argument, one integer argument and one character argument, in this order, and that it will

return a floating-point value.

Parameters

There are two types of parameters:

Formal parameter

Actual parameter

a. Formal parameter
e A formal parameter is a placeholder variable which is defined at the called function and
local function to the called function.
e The number of the formal parameters must agree with the number of actual parameters
passed to the function.
e Example:
The following function takes three formal parameters to calculate the sum.
Formal parameters
v v v
void calcSum (int num1, int num2, int num3)
{ cout << “Total : ” << num1 + num2 + num3
}
16
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 5: Function

b. Actual parameter

Actual parameter is a constant, variable or expression in a function call that corresponds
to the formal parameter.
Actual parameters contain values that will be passed to the function
Example:
The following function contains three values which will be passed to the

calcSum().

Actual parameters

void main()
intx=4y vy v
calcSum (10, x, 8+3) // function call

6. Function Definition

e A function must be defined before it can carry out the task assigned to it.

e |n other words, the statements that perform the task are written inside the function

definition.

e A function is written once in the program and can be used by any other function in the

program.

e The function definition is placed either before the main() or after the main().

Before the main()

The function prototype is not required.

int findMax()

{

statements;
}
void main()
{

findMax();
}

17

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

After the main()
int findMax(); //function prototype
void main()
{
findMax();
}
int findMax()
{
statements;
}

e A function definition consist of a function header and function body as shown below:

Syntax form

returnType functionName (type par‘ameter‘_list_)"‘r Function header

{
declaration(s);
statement(s); }

return expression;

Function body

Explanation
a. Function header
e returnType functionName (type parameter_list)
e The function header defines the return type, function name and list of parameters.
e |t is written the same way as the function prototype, except that the header does not
end with semicolon.
e Function header contains the following:
i Type of data, if any, is returned from the function when operation has
completed
ii. The name of the function

iii. Type of data, if any, is sent into the function.

b. Function body

e The function body contains declaration of local variables and executable statements

needed to perform a task assigned to the function.

18

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

An example of function definition that accepts three values, calculates the total and return

the total to the main function.

int sum3Num(int a, int b, int c)
{
int total = a + b + c;
return total;
}
Explanation

e The keyword int in the function header indicated that the function will return an

integer value.

e The parameter-list int a, int b and int c indicated that three integer values will be

sent into and used in the function sum3Num

e Return total indicated that the value of total will be returned to the calling function

Function representation

The above example can be represented as follows:

The function sum3Num
Calculates the total

The values a, b and c are sent into the function

a b c
I
v v v

sum3Num

total

The function returns the total

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

19

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

The keyword void

e A function that does not return a value after completing its assigned task is called a void

function.

e When there is no value to be returned to the calling function, and no value accepted from

the calling function we may use the following syntax form:

void functionName()

{

statements;

o When the parameterList is empty, it shows that no data will be transmitted into the

function when it is run. We may use either functionName() or functionName (void) for

that purpose.

Example of void functions

void sum(); //receives no values and returns no value
void calcSum(int a, int b); //receives 2 integers and returns no value
Example 1

#include <iostream.h>
void sum(); //function prototype declaration

void main()

{
cout << “Welcome!”;
sum(); //function call
cout << “\nEnd of program”;
}
void sum() //function definition
{
int numl, num2, total;
cout << “Enter two numbers (separate by space): ”;
cin >> numl >> num2;
total = numl + num2;
cout << “\nThe sum is : ” << total << endl;
}
20
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam

Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example 2

#include <iostream.h>
void sum(int, int); //function prototype declaration

void main()

{
int numl, num2;
cout << “Welcome!”;
cout << “Enter two numbers (separate by space): *’;
cin >> numl >> num2;
sum(numl, num2); //function call
cout << “\nEnd of program”;
}
void sum(int nl1, int n2) //function definition
{
int total;
total = nl + n2;
cout << “\nThe sum is : ” << total << endl;
}
Output
Welcome!

Enter two numbers: 35
The sumis: 8
End of program

Explanation for example 1

e In the above the example, the sum() receives no values from the main() and returns no
value to the main().

e When the function sum() is called in the main(), C++ will search for the sum() and execute

the statements inside the sum().

21

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

7. Function Call

e A function is made to perform its designated task by a function call in main function or in
other function.

e When a function is called, the program control is passed to the called function and the
statements inside the function will be executed to the end until control is passed back the
calling function.

e To call a function, specify the function name and the values of the parameters that the
function needs to do it job.

e The following syntax is used when calling a function:

Function-name(actual parameters);

Example of function calls
findMin(numl, num2);

getSum(firstNum, secNum);

Explanation
a. findMin()
e Acall to the function findMin() is made by the statement findMin(numl, num2);.
e The value residing in the variables num1, and num2 will be sent to the function
definition findMin().
e The function findMin() uses the values received to perform its assigned task. Here, the
control is transferred to the function defintion findMin() and after execution is
completed in the function definition findMin(), control is passed back to the calling

function.

b. getSum()
e The getSum() causes the values if firstNum and secondNum to be sent to function
definition getSum().
e After the execution in the function definition getSum is completed, the control is passed

back to the calling function.

22

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

The following program shows the function calls used for the displayAvg() and calcSum()

#include <iostream.h>

//function prototype declaration
void displayAvg(int, int, int);
void calcSum(int, int, int);

void main()

{
int numl, num2, num3; // local variable to the main function
cout << “Enter three numbers (separate by space): *;
cin >> numl >> num2 >> num3;
//function calls
calcSum (numl, num2, num3); // calls calcSum()
displayAvg(numl, num2, num3);

}

//function definition
int displayAvg(int x, int y, int z)

{ float avg;

avg = (x +y + z) / 3;

cout << “\nThe average is : ” << avg << endl;
}
void calcSum(int a, int b, int c)
{

int sum = ©;

sum = a + b + c;

cout << “\nThe sum is : ” << sum << endl;
}
Example

Enter 3 numbers (separate by space): 345
The sumis: 12
The average is 4.0

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

23

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

a. Making a function call
The following diagram shows the process that occurs when making a function call in
statement calcSum(numl, num2, num3).

numl num2 num3
main() 3 R 5 Q 4 Q
a b [4 sum
calSum() 3 & 5 4 & 12

Explanation

e When the statement calcSum(numl, num2, num3); is executed, values stored in numil,
num2, and num3 will be transmitted to the statement calcSum().

e The calcSum() then must determine where the values are to be stored.

e As shown the calcSum() function definition, the variables in the parameter list of the
calcSum(), i.e., int a, b and c specifies that the values received from the main() will be
stored into the location a, b and c as shown in the above diagram.

e The values received from the main() will be used perform the addition operation as
specified in the calcSum().

e As a result, after the statement sum = a + b; is executed, the value 12 is assigned to the
variable sum.

e The latest statement cout << “\nThe sum is : ” << sum << endl; causes the value of
sum, i.e. 12 to be printed on the screen.

b. Completing a function call
i. Function call that returns no value
ii. Function call that returns a value

24
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 5: Function

c. Function call without value returned
e This type of function does not return any value to the calling function
e Upon completing the last statement in the function definition, the control is passed back
to the statement that calls the function in the calling function.
e Thus, the next statement in the calling function will be executed.
Example

//function prototype with no return value

void displayAvg(int, int, int);
void calcSum(int, int, int);’

void main()

{
int numl, num2, num3;
cout << “Enter 3 numbers : ”;
cin >> numl >> num2 >> num3;
//function calls
calcSum(numl, num2, num3); // function call
cout << “Next process..”;
displayAvg(numl, num2, num3); // function call
}
void calcSum(int a, int b, int c)
{
int sum = ©;
sum = a + b + c;
cout << “\nThe sum is : ” << sum << endl;
}
void displayAvg(int x, int y, int z)
{
float avg;
avg = (x +y +2z) / 3;
cout << “\nThe average is : ” << avg;
}
Sample output

Enter 3 numbers:345
The sumis: 12

Next process...

The average is : 4.0

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam

Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

25

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Explanation
e The statement calcSum(numl, num2, num3); causes the function calcSum() to be
executed.
e Upon completing the execution in the calcSum(), control passed back to the calling
statement in the main().

e The next statement, cout << “Next process..”; will get executed.

d. Function call with value returned

e A function may also return a value. In this type of function, when the execution in the
called function is complete, the control is passed back to the calling function with a
value. This value will be used in the calling function.

e There are four ways how a returned value can be used in the calling function.
i. In an arithmetic expression
ii. In a logical expression
iii. In an assignment statement

iv. In an output statement

26

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

//function prototype that returns a value
int calcSum(int, int, int);

void main()

{

int numl, num2, num3, total;

cout << “Enter 3 numbers :”’;
cin >> numl >> num2 >> num3;

//in an assignment statement
total = calcSum(numl, num2, num3);

//in an output statement

//in a logical expression
if (calcSum(numl, num2, num) < ©
//in an arithmetic expression

}

//function definition
int calcSum(int a, int b, int c)

int sum = 0;
sum = a + b + c;
return sum;

cout << “\nThe sum is :* << calcSum(numl, num2,

total = calcSum(numl, num2, num3) / 3

num3);

B. Types of Independent Functions

In summary, when using functions, we can have four types of functions.

i. Function without value returned and parameter
ii. Function with value returned but without parameter
iii. Function without value returned but with parameter

iv. Function with value returned and parameter

Not return value

Return value

Without parameters void calcSum()

int calcSum()

With parameters void calcSum(int a, int b)

int calcSum(int a, int b)

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam

Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

27

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

1. Function Without Value Returned and Without Parameter
e This function has no return value and the returned type is written as void. All inputs,

calculation and outputs are done inside this function

Example

The following program accepts radius from the keyboard, calculates and display the area of

a circle.
#include <iostream.h>
void calcAreaCircle(); //function prototype
void main() //calling function
{
calcAreaCircle();
}
void calcAreaCircle() //function definition
{
float radius;
cout << “Enter radius of circle”;
cin >> radius;
cout << “\nThe area of the circle is » << 3.142 * radius * radius;
}
Sample output

Enter radius of circle: 2.1
The area of the circle is 13.85622

Explanation

Calling function Called function

A4

main() calcAreaCircle

o When the statement calcAreaCircle();is executed, the control from the calling
function i.e. main() is passed to the called function i.e. calcAreaCircle(). Then the
statement inside the calcAreaCircle() get executed.

e Upon completing the execution, the control is passed back to the calling function.

28

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

The following program prints numbers in ascending and descending orders through

printUp() and printDown().

#include <iostream.h>
//function prototype
void printUp();

void printDown();

void main()

¢ //function call
printUp();
printDown();
}
//function definition
void printUp() //printing numbers in ascending order
int s = 1;
while (s <= 10)
{
cout << s << “ 7
S++;
}
cout << endl;
}
void printDown() //printing numbers in descending order
{
int s = 10;
while (s >= 1)
{
cout << s << “ ”7;
S--5
}
cout << endl;
}
Sample output

12345678910
10987654321

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

29

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Explanation
Calling function Called function
main() printUp()

A

printDown()

e When the statement printUp(); is executed, the control is passed to the printUp().

e The statements in the printUp() are executed and when completed the control is
passed back to the calling function.

e Next, the statement printDown() get executed where the control is passed to the
printDown().

e Upon completing the execution in the printDown(), the control is passed back to the

calling function.

2. Function With Value Returned but Without Parameter
e This function does not receive any values from the calling function but it will return a

value (normally the result of a calculation) to the main() or other calling function

Example

The following program accepts a radius from the keyboard, calculates and displays the area.

#include <iostream.h>
float calcAreaCircle(); //function prototype
void main() //calling function
{

cout << “\nThe area of the circle is ” << calcAreaCircle();
}
float calcAreaCircle() //function definition
{ float radius, area;

cout << “\nEnter radius of circle: ”’;

cin >> area;

area = 3.142 * radius * radius;

return area;
}

30

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Sample output

Enter radius of circle: 2.1
The area of the circle is 13.85622

Explanation
Calling function Called function
main() P calcAreaCircle()

e When the following statement cout << “\nThe area of the circle is ” <«

calcAreaCircle(); is executed, C++ will search for the calcAreaCircle() first.

e Then the statements inside the function get executed. The last statement return

area; indicates that a value stored in the location area is to be returned to the main().

e The cout statement in the main() will display the value as shown in the sample output.

Function With Parameters and Without Value Returned

e This type of function transfers or copies data from the calling function to the called

function through parameters but no value is returned from it.

Example

The following program calculates the average if three numbers and displays the value on the

screen.

#include <iostream.h>
//function prototype declaration
void displayAvg3Num(int, int, int);
void main()
{ int nol, no2, no3;
cout << “Enter three numbers”;
cin >> nol »> no2 >> no3;
displayAvg3Num(nol, no2, no3); //function call
}
//function definition
void displayAvg3Num(int n1, int n2, int n3)
{ float average;
average = (n1 + n2 + n3) / 3;
cout << “\nThe average of the numbers is : ” << average;

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

31

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Sample output

Enter three numbers: 5 10 15
The average of the numbers is 10.0

Explanation

Calling function

Called function

displayAvg3Num()

main() nol > nl
no2 > n2
no3 > n3

e When the function displayAvg3Num(nol,

no2,

no3); is called, the values stored

inside nol, no2, and no3 are copied into the location n1, n2 and n3 inside the function

displayAvg3Num().

e With these values, the function displayAvg3Num() will use them to calculate and

consequently display the average.

4. Function With Value Returned and With Parameters

e With this type of function, values are passed to the called function through parameters

and one value is passed back to the calling function.

32

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam

Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program calculates the average of three numbers and displays the value to

the user.

#include <iostream.h>
//function prototype

float displayAvg3Num(int, int, int);
void main()

{

int nol, no2, no3;

float avg;

cout << “Enter three numbers”;

cin >> nol >»> no2 >> no3;

avg = displayAvg3Num(nol, no2, no3);

cout << “\nThe average is: * << avg;
}

//function definition
float displayAvg3Num(int n1, int n2, int n3)

{
float average;
average = (n1 + n2 + n3) / 3;
return average;

}

Sample output

Enter three numbers: 10 10 10
The average of the numbers is 10.0

Explanation
Calling function Called function
main() nol > nl displayAvg3Num()
no2 > n2
no3 > n3
P average
e When the statement avg = displayAvg3Num(nol, no2, no3); is executed, the

function call to displayAvg3Num() is carried out first resulting the values of nol, no2

and no3 to be sent to the function respectively.

33

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

e The function then calculates the average of those values and return the average value to
themain().
e Upon returning to the main(), the value returned will be captured into the variable

avg. the display statement following it will display the value kept in avg to the screen.

Another Example

The following program accepts three floating-point values and displays the smallest value.

#include <iostream.h>
//function prototype

float smallest3Num(float, float, float);
void main()

{

float numl, num2, num3;

cout << “Enter 3 floating-point values: *;

cin >> numl >> num2 >> num3;

cout << “\nThe smallest value is ” << smallest3Num(numl, num2, num3);
}

//function definition
float smallest3Num(float w, float x, float y)

{
if(w < x & w < y)
return w;
else if (x < w && x < y)
return Xx;
else
return y;
}
Sample output

Enter 3 floating-point values: 5.0 10.5 15.5
The smallest values is 5.0

Explanation
Calling function Called function
main() numl > W smallest3Num()
num2 > X
num3 > y

Return the smallest from w, x, y

A

34

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

e The statement cout << “The smallest values is *” << smallest3Num (numl,

num2, num3); causes the function smallest3Num() to be called.

e The values of num1, num2 and num3 are passed to the function which will be used to

determine the smallest value. The smallest value returned to the main() will be

displayed on the screen.

Summary

Without Value Returned

With Value Returned

Without Parameters

void calcSum()

int calcSum()

With Parameters

void calcSum(int a, int b)

int calcSum(int a, int b)

C. How Values are Passed Between Function

e A function communicates with another function by passing values between them.

e Afunction can send data to other function, and it can also accept values sent by other functions.

e Data can be passed between function through

i Global variable
ii. Parameter passing

iii. A return value

1. Global Variable

e When a variable is declared as global, its value can be changed at any point during the

program execution because the values are accessible to all function definition in the

program.

e The new value assigned to the global variable will replace value stored and this new value

will then be used throughout the whole program.

e The global variable is typically declared outside of any function in the program and they

remain in memory until the program ends.

35

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

The following program accepts three values and displays the sum.

#tinclude <iostream.h>

void calcSum(); //function prototype
int sum; //global variable

void main()

{
sum = 9;
cout << “Sum is : ” << sum << endl;
calcSum();
cout << “\nThe sum is :” << sum;
}
void calcSum()
{
int nol, no2, no3; //local variables
cout << “\nEnter three value : ”;
cin >> nol >> no2 >> no3;
sum = nol + no2 + no3;
}
Sample output
Sumis: 0
Enter three values: 257
The sumis 14
Explanation
sum e
14
main()
calcSum() nol no2 no3
2 5 7

e When the statement sum = 0 is executed in the main(), the global variable sum is assigned
with the value o.

e Next the statement calcSum() causes the function calcSum() to be called and the
statements in the function calcSum() are executed. Here, after the statement sum = nol
+ no2 + no3; is carried out, sum gets a new value, 14.

e When the control is passed back to the main(), the display statement cout << “\nThe

sum is : *” << sum; displays new value assigned to the global variable sum.

36

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

e Local variables on the other hand, are used inside the function that declared them. Thus, the
variable no1, no2, and no3 are local variables in the function calcSum().

e Global variables are sometimes useful in creating variables and constants that must be
shared between many functions. However, declaring a variable as a global should be
avoided due to the following drawbacks:

i It allows unintentional errors to occur when a function that does not need to
access the function accidently changes the variable’s contents.

ii. Functions allow the tasks to be independently executed and reusable, on the
other hand the use of global variables makes the program more dependent on
them.

e Thus, if more than one function needs access to the same variable, it is better to create a
local variable in one of the functions and then pass that variable only to the functions that

need it.

2. Parameter passing
e Parameters can be passed from the calling function to the called function using two type of
passing which are:
i Parameter passing by value

ii. Parameter passing by reference

a. Parameter passing by value
e When passing by value, a copy of that value is passed from the calling function to the
called function through the parameters.

e The changes made to the copied value do not change the original value.

37

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example

The following example shows that a value is passed to the displayVvalue() and displayed

as statement.

#include <iostream.h>
void displayValue(int);

void main()

//function prototype

{ int num = 4;
cout << “num BEFORE the function call : ” << num << endl;
displayValue(num); //function call
cout << “num AFTER the function call : ” << num << endl;
}
void displayValue(int value) // function definition
{
cout << “Value PASSED to the function is : ” << value << endl;
value = value * 3;
cout << “Value at the end of function : *” << value << endl;
}
Sample output

num BEFORE the function call : 4
Value PASSED to the functionis : 4
Value at the end of the function : 12
num AFTER the function call : 4

Explanation

Calling function

Called function

Num
main() 4
Value
displayValue() 4
12

e When displayvalue(num); is executed, the displayvalue(int value) is called and

then a copy of the value stored in the variable num is passed to the function. Thus, 4 is

passed to the function and stored in the variable value.

38

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam

Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

e The statement value = value * 3; causes the value to be assigned a new value, 12.
After the display statement is carried out, the control is passed back to the main(). The
display statement in the main() displays the value stored in the local variable num. Thus,

the value stored i.e. 4 is displayed.

Another example

The following program finds the sum of four numbers where the function add() is called by

value.

int add(int, int, int, int); //function prototype
void main()
{

int sum = ©;

sum = add(1e, 20, 15, 5); //function call

cout << “The sum is : ” << sum;

}

//function definition
int add(int a, int b, int c, int d)

{
int s;
s= a+b+c+d;
return s;
}
Sample output
The sumis : 50
Explanation
Calling function Called function
sum
main() 10 20 15 5 e
50
a b C d s
add() 10 20 15 5 50

e The statement sum = add(10, 20, 15, 5); calls the add(int a, int b, int ¢, int
d) and passes four value to the function. Thus in the add(), the variables a, b, ¢, and d get

copy the value passed to each of them.

39

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 5: Function

e When the arithmetic expressions = a + b + ¢ + d; is executed, s is assigned the value

of 50. This value is returned to the main() and captured into the variable sum. The display

statement displays the value then stored in sum.

b. Parameter passing by reference

When there is more than one value to be returned to the calling function or changed
during the program execution, reference parameter is used.

When a parameter is sent by reference, the function actually gets the memory location
of the actual parameter it can directly access the data.

In other words, the address of the variable in the computer’s memory is actually being
passed. As a result, the changes made to the variable will affect the original value.

When passing by reference, the actual parameter in the calling function must be
variable and the formal parameter must use the reference operator, which is referred
by the symbol ampersand (&). The reference operator forces the corresponding actual
formal parameters to refer to the same location.

In addition, the returned-type for passing parameters by reference is typically given the

type void.

Example

The next program shows that four memory locations are passed to the getMinMax() where

the last two parameters are referenced.

{

//function prototype
void getMinMax(int, int, int&, int&);

//function call
getMinMax(numl, num2, minimum, maximum);

//function definition
void getMinMax(int a, int b, int& min, int& max)

if(a > b)

{ min = b;
max = a;

}

else

{ min = a;
Max = b;

}

40

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program shows that the displayvalue() is called by reference which causes

the changes made after the call affect the original value.

#include <iostream.h>
void displayValue(int&); //function prototype
void main()
{
int num = 4;
cout << “num BEFORE the function call : ” << num << endl;
displayValue(num); //function call
cout << “num AFTER the function call : * << num << endl;
}
void displayValue(int& value) //function definition
{
cout << “Value PASSED to the function is : ” << value << endl;
value = value * 3;
cout << “Value at the end of the function : ” << value << endl;
}
Sample output

num BEFORE the function call : 4
Value PASSED to the functionis : 4
Value at the end of the function : 12
Num AFTER the function call : 12

Explanation

Calling function Called function

num
main() 4
12 * Any changes in value will
directly reflect num

displayValue() &value l
4
12

e Inthemain(), the value is referenced as num while in the displayvalue(), the value is
referenced as value.
e The statement value = value * 3; causes the value to be assigned 12.

e This changes just made will affect the original value, thus num on the main() gets 12.

41

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 5: Function

Example
The following program shows the use of function call by reference, to find the sum of

four numbers.

//function prototype
void add(int, int, int, int, int&);

void main()

{
int sum = o;
add(1e, 20, 15, 5, sum); //function call
cout << “The sum is : ” << sum;

}

//function definition
void add(int a, int b, int ¢, int d, int& s)

{ s=a+b+c+d;
}
Sample output
The sum is : 50
Explanation
10 20 15 5 sum
0
main() 50
displayValue() a b c d \ &s J
10 20 15 5 50

e Inmain() value referenced is sum and in the displayValue() the value is referenced as
value.

e When add(10, 20, 15, 5, sum); is executed, add() is called and four values and a
memory location are passed to the function.

e The memory is referenced as s in the add() and as s is assigned the value 50, the

changes reflect the original variable, sum. Thus sum gets a new value, 50

42

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 5: Function

Example

#tinclude <iostream.h>
#tinclude <conio.h>

void change(int& numl, int& num2) //function

{

numl += 10;
num2 += 20;

definition

}
void main()
{
int firstnum, secnum;
cout << "Enter two numbers : ";
cin >> firstnum >> secnum;
cout << "\nFirst number is : " << firstnum;
cout << "\nSecond number is " << secnum;
change(firstnum, secnum); //function call
cout << "\nFirst number is now " << firstnum;
cout << "\nSecond number is now : " << secnum;
getch();
}
Sample output

Enter two numbers : 8 9
First number is : 8

Second numberis : 9

First number is now : 18
Second number is now : 29

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

43

