CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Learning Objectives
At the end of this chapter, student should be able to:
v" Understand the requirement of a loop
Understand the Loop Control Variable ()
Use increment (++) and decrement (--) operators
Program loop with while, for and do-while statements
Understand Counter-controlled, Sentinel-controlled and Flag-controlled structures
Learn the basic algorithms commonly use in loops

Understand the flow of control when using nested loop

A N N N N N R

Learn the use of break and continue statements

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

A. INTRODUCTION TO ITERATION
e Many programs may require a repetition capability in which the same calculation or sequence of
instruction is repeated over and over while certain condition remains true using sets of data.
e Examples of repetition:
- Continual checking of data entries until an acceptable entry
- Counting and accumulating running totals
- Recalculation of output values that only stop upon entry of sentinel value.
e Each repetition is referred to as iteration or loop because of its cyclic nature.
e Why repetition is needed?
e Suppose we want to add five numbers to find their average. From what we have learned

so far, we could proceed as follows (assume that all the variables are properly declared)

cin >> numl >> num2 >> num3 >> num4 >> num5;
sum = numl + num2 + num3 + num4 + num5;

average = sum / 5.
e How about if we want to add 100 or even 1000 numbers? This would be so tedious and
complex.
e Therefore, repetition or loop structure offers a better way of performing those tasks.

The example below while input sets of number until we entered number less than 1.

while (num > 9)

cin >> num;
sum = sum + num;
count = count + 1; //count++;

average = sum / count;

1. Types of Repetition Statement
There are three types of repetition statement. There are:
a. while
b. for

C. do.while

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

2. Types of Repetition Structure
There two types of repetition structure. There are
a. Counter-controlled loop
b. Sentinel-controlled loop

c. Flag-controlled loop

3. Requirements of a Repetition Structure
e Aniteration structure requires:
a. Loop control variable (LCV)
A variable whose value determines whether the loop body will be executed or not.
b. Loop condition
If the condition is true, the loop body is executed; otherwise the loop exits.
c. Loop body

A block of statements to be repeated.

e Execution of the loop body is controlled by 3 operation:
a. Initialization of the loop control variable (LCV)
b. Evaluation of LCV in the loop condition

c. Update of the LCV by incrementing or decrementing

4. Increment and Decrement Operator

Y
An action or series
of actions

I

e Operator is placed after a variable to indicate the increment or decrement of one value from
the variable.
e Example:
a. x++
Use the current value of x in the expression in which x resides, and then increment by 1.
Xx=x+1 is equivalent to x+=1 or X++

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

b. x--
Use the current value of x in the expression in which x resides, then decrement by 1
x=x-1 is equivalent to X -= or X--

B. while LOOP

e Expression is evaluated first and then executes the statement.
e If the expression is evaluate to true, it continue to be executed, and if the expression is evaluate
to false, it exit the while loop.

e Syntax
while (expression)
{
statement;
}

e Flowchart

Q

Statementl

N

Statement2

e while repetition structure uses three types of repetition structure. There are:
a. Counter-controlled structure
b. Sentinel-controlled structure
c. Flag-controlled structure

1. Counter-Controlled Structure
1. Used when the number of time a segment code needs to be repeated is known in advance.
2. Example: Repeat a process for 10 times
3. Requirement:

The name of a control variable or loop counter
The initial value of the control variable
The condition that test for the final value of the control variable

Q 0o T o

The increment or decrement of the control variable each time loop is executed.

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

e |tis also used by the other two iteration statements which are do..while and for.
e Example flowchart:

sum =0, count =0, limit =10

>
<
4

NO count < limit

\ 4 v
average = sum / count Read num
v A\ 4
Print average sum += num » count++
"IIII%HHIIII"
e Example C++:

#include <iostream>

void main()

{ int num, average, sum = @, count = 0, limit = 10;

while (count < limit)
{ cout << “Enter any number *;
cin >> num;
sum += num;
cout << “\ncount before increment = ” << count;
cout << “\nsum = ” << sum;

count++;
cout << “\ncount after increment= *” << count;
cout << “\nsum = ” << sum;
average = sum / count;
cout << “Average for sum of ten integer numbers is » << average;

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

e Explanation of the program :

The body of the while-loop

cout << “Enter any number ”;
cin >> num;
sum += num;

count++;

will be repeated as long as the value of count is less or equal to the value of 1imit. If the

value of count is greater than 1imit, the while-loop will exit and execute statement

average = sum / count;

cout << “Average for sum of ten integer numbers is » << average;

e This program is called a counter-controlled structure because it will repeat the

statement in the body of loop up to the specified number of iteration.

Using while loop to find the largest value

e |n order to get the largest value of sequence of values entered, the first value entered is
commonly treated as the largest. This value will be compared with the remaining values
entered.

e Example: Write a complete C++ program to find the largest of sequence of integers. The

number of integers is determined by user.

Problem definition
Input: number, totalNumber

Process: Accept numbers and compare to the largest

Output: largest

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Program coding

#include <iostream.h>

void main()
{ int number, counter = @, largest, totalNumber;

cout << “How many numbers? *”
cin >> totalNumber;

cout << “Enter any number”;
cin >> number;

largest = number;

while (counter < totalNumber-1)
{ cout << “Enter any number *’;
cin >> number;
if (number > largest)
largest = number;
counter++;

}

cout << “\n The largest numbers is *” << largest;

Using the while loop to find the maximum and minimum values

To find the maximum and minimum values, we must determine whether the data has a

range of values or not.

If there is a range of values, the minimum variable must be initialized to the largest
value in the range and the maximum variable must be initialized to the smallest value in

the range.

If there is no range of values, both minimum and maximum variable are initialized to the

first value entered by user.

Example of finding the minimum and maximum from numbers with unknown range of
values: Write a complete C++ program to find smallest and largest number from a

sequence of five integers input from keyboard.

Problem definition

Input: Any 5 numbers

Process: Accept the number and determine smallest and largest
Output: maximum and minimum

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

‘Program coding

#include <iostream.h>

void main()

{ int number, counter = 1, min, max;
cout << "\n Enter any number ";
cin >> number;

min = number;
max = number;

while (counter < 5)

{

cout << "\n Enter any number ";
cin >> number;

if (number < min)
min = number;

if (number > max)
max = number;

counter++;

}

cout << "\n The largest numbers 1is
cout << "\n The smallest numbers is

<< max;
<< min;

e Example of finding the minimum and maximum vales from known range of values:
Write a complete C++ program to find the smallest and largest number from sequence

of five numbers input from keyboard. The range of the numbers is from 0 to 100.

Problem definition
Input: Any 5 numbers
Process: Accept the numbers and determine smallest and largest

Output: maximum and minimum

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Program coding

#include <iostream.h>

void main()
{ int number = @, counter = 0, min = 100, max = 0;

while (counter < 5)

{

cout << "\n Enter any number ";
cin >> number;

if (number < min)
min = number;

if (number > max)
max = number;

counter++;

}

cout << "\n The largest numbers is
cout << "\n The smallest numbers is

<< max;
<< min;

2. Sentinel-Controlled Structure
e Used when the exact number of repetitions is not known in advance or the items are too
numerous to count beforehand.
e Thus, some loops require the user to enter a special value to end the loop. This special value
is called the sentinel value.

e Theinteger and character value can be used as a sentinel value.

Using integer as sentinel value in a while loop
e Example: Write a complete C++ program display ‘Incorrect pin number, please try again’ as

long as the code entered is not 877.

#tinclude <iostream.h.

int main()

{

cout << “\nEnter your pin number”;
cin >> number;

while (number != 877)

{

cout << “\nIncorect pin number, please try again”;

cout << “\nEnter your pin number”;

cin >> number;
}
cout << “\nWelcome”

9
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

e Example: Write a complete C++ program to calculate the average score of a sequence of

scores as long as the score entered is not -1.

Problem definition
Input: scores
Process: accepts scores, find the average

Output: average

Program coding

#tinclude <iostream.h>
#include <conio.h>

int main()
{ int total = @, scoreCounter = 0, score;
float average;

cout << "\n To stop entering scores, type -1 ";

cout << "\n Enter score ";
cin >> score;

while (score != -1)
{ total += score; //total = total + score;
scoreCounter++; // scoreCounter = scoreCounter + 1;

cout << "\n Enter score ";
cin >> score;

}

if (scoreCounter > 1)

{ average = total / scoreCounter;
cout << "\n The average score is

}

else
{ cout << "\n No score has been entered ";

}

<< average << endl;

cout << "\n End of program ";

getch();
return 0;

}

10

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Using character input as sentinel value to count the number of occurrence in the while loop
e Example: Write a complete C++ program to count the number of scores entered by the user

and display the total number of scores entered.

Problem definition
Input: scores
Process: count the number of scored entered

Output: numScore

Problem coding

#tinclude <iostream.h>

void main()
{ char choice;
int score, numScore = 9;

cout << “Do you want to start? (Y/N): *;
cin >> choice;

while (choice != ‘N’ || choice != ‘n’)
{ cout << “\n Enter a score: ” ;
cin >> score;
numScore++;
cout << “\n Continue? (Y/N): ”’;
cin >> choice;

}

cout << “\n The number of scores entered: ” << numScore << endl;

Using character input as sentinel value to calculate the sum in a while loop
e Example: Write a program that asks for quantity of items bought and the amount of each
item for an unknown number of customers. The program will then print the total amount of

money paid by all customers in a supermarket.

Problem definition
Input: quantity, priceltem
Process: calculate the total amount paid by all customer

Output: totalAll

11

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Problem coding

#tinclude <iostream.h>
#tinclude <conio.h>

void main()

{ char nextCust = 'Y';
double sum = 0.0, price = 0.0, amt = 0;
int itemQty = ©;

while (nextCust == 'Y'|| nextCust == 'y'")
{ cout << "\n Enter quantity and price " ;
cin >> itemQty >> price;
amt = itemQty * price;
cout << "\n The price the customer must pay is RM" << amt;
sum += amt;

cout << "\n\n Next customer (Y/N):";
cin >> nextCust;
}
cout << "\n Total amount paid by all customers is RM" << sum;
getch();

}

e Example: Write a complete C++ program to sum a list of positive values entered by user.
Problem definition
Input: positive number
Process: sum all the positive values entered
Output: sum
Program coding
#include <iostream.h>
#include <conio.h>
void main()
{ float number = 0, sum = 0.0;
cout << “\n Enter a list of positive values (end with -1.0)”;
cin >> number;
while (number > 0.0)
{ sum +=number;
cin >> number;
}
cout << “\n Sum is ” << sum << endl;
getch();
}
12
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

3. Flag-Controlled Structure
e Uses a bool variable to control the loop.

e General form of flag-controlled structure:

found = false; //initialize the loop control variable
while (!found) //test the loop control variable

{

if (expression)
found = true; //update the loop control variable

}

e The variable found above, which is used to control the execution of the while-loop is called

flag variable.

Using flag-controlled variable to check for password
e Example: Write a program using flag-controlled variable that will prompt user for a
password, accept those password and display message Password accepted if the user has
entered the correct password. Otherwise, the program will display “Incorrect password?”.
This program will loop until the user entered the correct password.
Problem definition
Input: sequence of character (password)
Process: verify the password

Output: Message

Program coding (type 1)

#include <iostream.h>
#include <string.h>
void main()
{ char password[7], myPassword[7] = {"secret"};
bool pass = true;
while (pass)
cout << "\n Enter your password ";
cin >> password;

if (strcmp(password,myPassword) == @)

{ pass = false;

}

else

{ cout << "\n\a Incorrect password";
}

}

cout << "\n Password accepted";

13

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Program coding (type 2)

#tinclude <iostream.h>
#include <string.h>

void main()
{ char password[7], myPassword[7] = {"secret"};
bool pass = false;

while (!pass)
cout << "\n Enter your password ";
cin >> password;

if (strcmp(password,myPassword) == 0)

{ pass = true;

}

else

{ cout << "\n\a Incorrect password";
}

}

cout << "\n Password accepted";

Using flag-control variable to calculate the sum in a while loop
o Example: Write a program that asks for quantity of items bought and the amount of each
item for an unknown number of customers. The program will then print the total amount of

money paid by all customers in a supermarket.

Problem definition
Input: quantity, priceltem
Process: calculate the total amount paid by all customer

Output: totalAll

14

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Program coding (Style 1)

#include <iostream.h>

#include <conio.h>

void main()

{ char nextCust = 'Y', inputNextCust;
bool code = true;
double sum = 0.0, price = 0.0, amt;
int itemQty;

while (code)
{ cout << "\n Enter quantity and price " ;
cin >> itemQty >> price;
amt = itemQty * price;
cout << "\n The price the customer must pay is RM" << amt;
sum += amt;
cout << "\n\n Next customer (Y/N):";
cin >> inputNextCust;

if (inputNextCust != nextCust)
code = false;

}

cout << "\n Total amount paid by all customers is RM" << sum;
getch();
}

Program coding (Style 2)

#include <iostream.h>

#include <conio.h>

void main()

{ char nextCust = 'Y', inputNextCust;
bool code = false;
double sum = 0.0, price = 0.0, amt;
int itemQty;

while (!code)
{ cout << "\n Enter quantity and price " ;
cin >> itemQty >> price;
amt = itemQty * price;
cout << "\n The price the customer must pay is RM" << amt;

sum += amt;

cout << "\n\n Next customer (Y/N):";
cin >> inputNextCust;
if (inputNextCust != nextCust)
code = true;
}

cout << "\n Total amount paid by all customers is RM" << sum;
getch();}

15

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

break Statement

e So far, the break keyword found is in the switch statement. The break statement can also be

used in the repetition statements. The break causes an immediate exit from enclosing loop

or switch statement.

e Anexample of break statement usage:

while (expression)

{
statement-1;
if (expression)
break;
statement-2;
}
statement-3; <«

Upon evaluating the expression to true, the
break statement will exit from the while loop
resulting the statement-2 to be skipped. Next
Statement-3 will be executed.

e Example:
int x;
for (x = 1; x <= 10; X++) //Sample output
{ 1234
if (x == 5) The Loop terminated at x = 5
break;

cout << x << “ 7

}

cout << “\nThe loop terminated at x = ” << x;

int x = 1;
while (x <= 10) /*What is the output of this
{ statement*/
if (x==5)
break;
cout << x << “ 7
X++;
}
cout << “\nThe loop terminated at x = ” << x;
int x = 1; /*What is the output of this
do statement*/
{ if (x==5)
break;
cout << x << “ 7
X++;
} while (x <= 10);
cout << “\nThe loop terminated at x = ” << x;

References:

16

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

continue Statement

e The continue statement skip the remaining statements on the loop and proceeds with the
next loop.

e It is used in a loop structure to alter the flow of control or to check for the incorrect data.
Note that the continue statement may only used in while, for and do-while loops.

e Anexample of continue statement usage:

while (expression) <«

{ If the expression in the while loop is evaluated
statement-1;

if (expression)

continue; — | the expression in the if statement yields true,

statement-2;

to true, statement-1 will be executed. Next if

the continue statement cause the operation to

}
statement-3; re-executed the while loop.
e Example:
int x; //Sample output
for (x = 1; x <= 10; Xx++) 123467829106
{ Continue statement causes
if (x == 5) x=5 not printed
continue;

cout << x << “ 7

}

cout << “\nContinue statement causes x=5 not printed”;

int x = 1; /*What is the output of
while (x <= 10) this program? This program
{ will execute infinitely
if (x == 5) when x == 5. Modify this
continue; program so that the output
cout << x << “ 7 will be the same as above
X++; (for Loop)*/
}

cout << “\nContinue statement causes x=5 not printed”;

int x = 1; /*What is the output of
do this program? This program
{ will execute infinitely
if (x == 5) when x == 5. Modify this
continue; program so that the output
cout << x << “ 7 will be the same as above
X++; (for Loop)*/

} while (x <= 10);
cout << “\nContinue statement causes x=5 not printed”;

17

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

C. for LOOP
e for statement is a counter-controlled loop in which a loop variable manages the repetition

through counting. The advantages of using a for loop is described below:

1. Initialize loop control variable is evaluated first before any iteration occurs.

2. Expression is evaluated immediately after the initialization. It determines whether the
loop should continue iterating. If it is true, the loop body is executed.

3. Update loop control variable. The update expression is used to update the loop control
variable, and it is evaluated after the loop body is executed.

e Flowchart:

Initialize LCV

d
y A

condition

Loop body

Update LCV

A 4
Y

Using for loop to calculate sum

Example: The following example shows the use of for loop to calculate sum.

int sum = 9;
for (int count = @; count < 5; count++)

cout << “\nEnter an integer: ”;
cin >> number;
sum = sum + number;

»

cout << “\nThe sum is << sum;

//sample output
Enter an integer:
Enter an integer:
Enter an integer:
Enter an integer:
Enter an integer:
The sum is 25

N A O U1 0

18

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

It is equivalent to the flowchart given below:

sum =0
count=0
< A
Y
Y o« H N
count<5 cout << “\nEnter an integer: ”; »| Update LCV N
cin >> number;
sum = sum + number
N

Example: Write a complete C++ program to find the sum of all the even integers from 2 to 20

using for statement.

Problem Definition
Input: No input
Process: Sum up all even integers from 2 to 20

Output: Sum

Program Coding

#include <iostream.h>

void main()
{ int number, sum = 0;
for (number = 2; number <= 20; number += 2)
sum += number;
cout << “The sum of all even numbers between 2 to 20 is ” << sum;

19

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Example: Write a program that accepts a series of genders from a class of 10 and counts the

number of female in the class.

D. do.while LOOP

Problem definition
Input: Gender
Process: Count the number of female

Output: Number of female student

Program coding

#include <iostream.h>
#include <ctype.h>

void main()
{ char gender;
int countFemale = 0;
for (count = @; count < 30; count++)
{ cout << “\nEnter gender (F-female, M-male): *;
cin >> gender;
if (toupper (gender) == °F’)
countFemale++;

}

cout << “\n The number of female students are:

»

<< countFemale;

e do.while loop employs a posttest loop, testing the loop condition after each loop iteration.

The do..while loop will execute at least once.

e Syntax form:

do

{
Loop body;
} while (condition);

e The do.while statement is similar to the while statement except that its condition is

evaluated at the end of the loop and not at the beginning. This means that a do..while loop

will always iterate at least once, regardless of the value of its control condition.

20

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

e Flowchart

Initialize LCV

&
<

A 4

Loop body

'

Update LCV

Using do..while loop to calculate total

The following example shows the use of the do..while loop to calculate total.

e Example: Write a complete C++ program to find the total salary of 5 employees entered by
user.
Problem definition
Input: Salary
Process: Accept salary and accumulate total salary
Output: Total Salary
21
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Program coding

#tinclude <iostream.h>

void main()

{ int salary, totalSalary = @, count = 0;
do
{ cout << “Enter salary: ”’;

cin >> salary;
totalSalary = totalSalary + salary;
count++;

} while (count < 5);

cout << “The total salary is RM” << totalSalary;

e Example: Write a C++ program using do..while loop that accepts a valid input for salary

within the range of 1000 and 3000 and display the total salary for the valid salary entered.

Problem definition

Input: Salary

Process: Accept and accumulate salary as long as the salary entered is within the
range of 1000 and 3000

Output: Total salary

Program coding

#include <iostream.h>

void main()

{ int totalSalary = @, salary = 0;
do
{ totalSalary = totalSalary + salary;

cout << “Enter salary: ”;
cin >> salary;
} while (salary > 1000 && salary < 3000);
cout << “The total salary is RM” << totalSalary;

22

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

E. Summarized of while, do..while and for

PSEUDOCODE C++ STATEMENT
//DOWHHILE using counter-controlled loop //while statement using
//counter-controlled loop
sum (int) = ©
bil (int) =1 int sum = 0;
int bil = 1;
1. Start
2. DOWHILE bil <=5 while (bil <= 5)
sum += bil { sum+= bil;
bil++ bil++;
ENDDO }
3. Stop

//REPEAT..UNTIL using counter-controlled loop //do-while statement using
//counter-controlled loop

sum (int) = ©
bil (int) =1 int sum = 0;
int bil = 1;
1. Start
2. REPEAT do
sum += bil { sum += bil;
bil++ bil++;
UNTIL bil > 5 } while (bil <=5)
3. Stop

//DO loop_index = initial_value TO final_value | //for statement
//This statement is also equivalent to while

//and do..while loop that using int sum = 0;

//counter-controlled loop in C++ statement for (int bil = 1; bil <=5; bil++)
sum +=bil;

sum (int) = ©

bil (int) =1

1. Start

2. DO bil =1 TO 5
sum += bil
ENDDO
3. Stop

F. Infinite Loop
e Aloop is called infinite when the loop repeats itself repeatedly with no end. The program
does not work as expected.

e Example:

PSEUDOCODE C++
Infinite loop Infinite loop
x (int) = o int x = 0;
1. Start while (x == @)
2. DOWHILE x == { cout << “No exit!”;
Print “No exit!” X = 0;
X =0 }
ENDO
3. Stop

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

G. NESTED LOOP - (Concentrate on nested loop using for only)

A loop may be executed within another loop. An inner loop is considered as statements in

the body of another outer loop.

e Syntax:
PSEUDOCODE C++
1. Start while (conditionl)
2. DOWHILE condition { for (initial; condition2; update)
DO index = initial TO final { loop body1l;
Loop bodyl }
ENDDO Loop body2;
Loop body2 }
ENDDO
3. Stop
1. Start while (conditionil)
2. DOWHILE conditionl { while (condition2)
DOWHILE condition2 { loop body1l;
Loop bodyl }
ENDDO Loop body2;
Loop body2 }
ENDDO
3. Start
1. Start for (initial; conditionl; update)
2. DO indexl = initial TO final { for (initial; condition2; update)
DO index = initial2 TO final { Loop body1l;
Loop bodyl ¥
ENDDO Loop body2;
Loop body2 }
ENDDO
3. Stop
e Explanation:
e The outer loop will be tested and executed first. If the condition1 is TRUE, the inner loop
will then be tested.
e Iftheinnerloop is TRUE the loop body 1 (statement) will be executed until the condition
is no longer TRUE.
e If the condition in inner loop no longer TRUE, it exit the loop and execute the loop
body2 (statement) before passing back to outer loops.
e The same process will be repeated until conditionl in the outer loop no longer TRUE,
and then exit the outer loop and finish the looping process.
24
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

e Flowchart

Loop body2

Loop body2

e Example: Write a complete C++ program to calculate average mark of 4 subjects for 3

students.

Problem definition

Input: Marks

Process: Get 4 marks for each of 3 students and calculate the average mark

Output: Average

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 4: Repetition Control Structure

Program coding

//using for - for
#tinclude <iostream.h>

void main()

{

int sumStud, sumAll = @, mark, studID;
float avgMark;

for (int stud = 1; stud <=3; stud++)
{ sumStud = 0;
cout << “Enter student ID: ;
cin>> studID;
for (int subject = 1; subject <= 4; subject++)
{ cout << “Enter mark: ”’;
cin >> mark;
sumStud += mark;

}

sumAll += sumStud;
}
avgMark = sumAll / 3;
cout << “\nThe total mark is :” << sumAll;
cout << “\nThe average is :” << avgMark;

//using while - for
#tinclude <iostream.h>

void main()

{

int sumStud, sumAll = @, mark, studID;
float avgMark;
int stud = 1;
while(stud <=3)
{ sumStud = 0;
cout << “Enter student ID: ;
cin>> studID;
for (int subject = 1; subject <= 4; subject++)
{ cout << “Enter mark: ”’;
cin >> mark;
sumStud += mark;
}
sumAll += sumStud;
stud++;
}
avgMark = sumAll / 3;
cout << “\nThe total mark is :” << sumAll;
cout << “\nThe average is :” << avgMark;

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

26

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING

Chapter 4: Repetition Control Structure

{

void main()

//using while - while
#tinclude <iostream.h>

int sumStud, sumAll = @, mark, studID;
float avgMark;
int stud = 1;
while(stud <=3)

{

}

sumStud = 9;

cout << “Enter student ID:
cin>> studID;

int subject = 1;

while (subject <=4)

{ cout << "Enter mark:

cin >> mark;
sumStud += mark;

subject++;
}
sumAll += sumStud;
stud++;

avgMark = sumAll / 3;
cout << “\nThe total mark is :” << sumAll;
cout << “\nThe average is :” << avgMark;

)

H. Selection within a loop

e Aselection statement inside a loop is commonly found.

e A fororwhileloop is used to cycle through a set of numbers and select those numbers that

meet the selection criteria.

e Example: Write an algorithm that input 10 integers and count the number of odd and even

number.

Problem definition

Input: Numbers

Process: Get 10 numbers and count the odd and even number

Output: Count for odd, count for even

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

27

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

Program coding

//using while - while
#tinclude <iostream.h>

void main()

{ int num, odd = @, even = 0;
for (int x = @; X < 10; X++)
{

»

cout << “Enter number: *’;
cin >> num;

if (num % 2 == 0)
even++;
else
odd++;

}

cout << “\nThe count for even number is *” << even;
cout << “\nThe count for odd number is ” << even;

EXERCISES
1. What will be displayed by the following program fragment?

a. sum = 0;
count = 1;

while (count < 10)
{
sum += 10;
count++;

}

cout << “sum ” << “\t” << count << endl;

b. sum = 10;
count = 10;

do
{
sum -= 2;
count--;
} while (count != 10);
cout << “sum ” << “\t” << count << endl;

C. sum = O;
count = 10;

for (int x = 1; x < count; x++)
sum += X;
count--;

}

cout << “sum ” << “\t” << count << endl;

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

28

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 4: Repetition Control Structure

2. Write a program fragment to display the following pattern using loop statements.

*
a.
* %

* % %

* kKKK
* ok K Kk kK
* kKKK
* % %
*%

*

b. * Kk %
* %k

% %k

C * k%
* %%

* %

%k k kK k
* *
* *
* *

ko %k Kk

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

29

