CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

Learning Objectives
At the end of this chapter, student should be able to:
v Use the relational operator (>, >=, <, <=, ==, 1=)
Use the logical operator (!, &&, ||)
Understand the Boolean expression
Write the pseudocode for the selection structure
Create flowchart for the selection structure
Implement decision using one-way, two-ways, and multiple-ways selection structure (if, if-else)

Recognize the correct ordering of decisions in multiple branches

AN N N N N

Program simple and complex decision

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

A. Comparison and Expression
e To make decisions, you must be able to make comparisons and express the conditions that are
true or false.
e Comparison is done by using relational operator.
i.e.i> j, x ==y, etc.
e An expression that has a value either true or false is called a logical (Boolean) expression.

e Condition is represented by a logical (Boolean) expression.

B. Relational and Logical Operator
1. Relational Operator
e There are 6 relational operators that allow to state conditions and make comparisons.

e They are all binary operations that accept 2 operands and compare them.

The result is logical data, that is, it is always true (1) or false (0).

Relational Operator Meaning
< Less than
<= Less or equal
> Greater
>= Greater or equal
== Equal
I= No equal

2. Logical Operator
e Logical operators enable you to combine logical expressions.

e C++ has three logical operators as below:

Operator Description
! not
&& and
| or

e Logical operators take only logical values as operands and produce only logical values as result.
e The operator ! is unary, so it has only one operand.

e The operator & and | | are binary operators, so it has more than one operand.

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

C. Simple Boolean Expression
e An expression in which two numbers (arithmetic values) are compared using a single relational
operator.
e Each Boolean expression has the Boolean value true or false according to the arithmetic validity
of the expression:

e Syntax of Boolean expression:
<arithmetic value> relational operator <arithmetic value> - Boolean value

e Example of Boolean expression using relational operator:

Expression Meaning Value
8 <15 8 is less than 15 True
6 1=6 6 is not equal to 6 False
2.5 > 5.8 | 2.5is greater than 5.8 False
5.9 <= 7.5 | 59js |ess than or equal to 7.5 | True

1. The !(not) Operator

e Expression:

Expression | !/(Expression)

true (1) false (0)
false (0) true (1)
e Example:
Expression | Value Explanation
P (‘A > “B’) | true | Because ‘A’ > ‘B’ is false, | (‘A’ > ‘B’) is true
1 (6 <=7) false | Because 6 <=7 is true, ! (6 <=7) is false

2. The && (and) operator

e Expression:

Expressionl | Expression2 | Expressionl && Expression2
true (1) true (1) true (1)
true (1) false (0) false (0)
false (0) true (1) false (0)
false (0) false (0) false (0)

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

Example:

Expression

Value Explanation

(14 > = 5) && (A’ < ‘B’)

true Because (14 > = 5) is true, (‘A’ < ‘B’) is true,

and true && true is true, the expression
evaluates to true.

(24 >= 35) && (A’ < ‘B’)

false Because (24 >= 35) is false, (‘A’ < ‘B’) is true,

and false && true is false, the expression
evaluates to false.

3. The || (or) operator

D. Precedence of Operator

Expression:
Expressionl | Expression2 | Expressionl || Expression2
true (1) true (1) true (1)
true (1) false (0) true (1)
false (0) true (1) true (1)
false (0) false (0) false (0)

Example:

Expression Value Explanation

(14 > = 5) || (‘A > “B’) true | Because (14 > =5) is true, (‘A’ > ‘B’) is false, and true
| | false is true, the expression evaluates to true.

(24 >= 35) || (“A’ >7B’) false | Because (24 >= 35) is false, (‘A’ > ‘B’) is false, and
false && false is false, the expression evaluates to
false.

(‘A <=a”) [(7 1=7) true | Because (‘A’ <=‘a’) is true, (7 !=7) false, and true ||
false is true, the expression is evaluates to true.

Operators Precedence

++, -- First

I, +, - (unary operators) | Second

* [, % Third

+, - (binary operator) Fourth

<, <=, >=, > Fifth

==, I= Sixth

&& Seventh

|| Eighth

= (assighment operator) | Last

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

E. Decision Control Structure .

e The program executes particular statements

depending on some condition(s). w

e This structure represents decision-making
capabilities of the computer. | Statementl I

e You can use selection control structure in

b 4

Statement2

pseudocode/flowchart to illustrate a choice

between two or more actions, depending on

whether a condition is true or false.
e There a number of variations of the selection structures, as follows:
1. One-way selection
a. Simple selection with null false branch (null ELSE statement)
2. Two-ways selection
a. Simple selection (if-else statement)
b. Combined selection
i && (AND)
ii. || OR
3. Multi-ways (multiple) selection
a. Linear nested if statement
b. Non-linear nested if statement

c. Switch statement

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

1. One Way Selection
e The null ELSE structure is a variation of the simple IF structure. It used when a task is
performed only when a particular condition is true.

e |f the condition is false, then no processing will take place and the IF statement will be
passed.

e Syntax: if (expression)
Statement

e Example:

#include <iostream.h>
#include <conio.h>
#include <math.h>

void main()
{ int absoluteValue, negativeNumber;

cout << "Enter negative number : ";
cin >> negativeNumber;

if (negativeNumber <)
absoluteValue = fabs(negativeNumber);

cout << "Absolute value for " << negativeNumber << " is "
<< absoluteValue;

getch();
)i

2. Two Way Selection
a. Simple selection (if-else)
e Simple selection occurs when a choice is made between two alternative paths,
depending on the result of a condition being true or false.

e Only one of the selection will be followed, depending on the result of the condition in

the IF clause.
e Syntax: if (expression)
statementl
else
statement2

References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

e Example:

#include <iostream.h>
#include <conio.h>

void main()
{ double wages, rate, hours;

cout << “Enter working hours and rate “;
cin >> hours >> rate;

if (hours > 40.0)

wages = 40.0 * rate + 1.5 * rate * (hours - 40.0);
else

wages = hours * rate;

cout << “The wages are RM “ << wages;

getch();
}

b. Combined selection
e A combined IF statement is one which contains multiple conditions, each connected
with the logical operators AND and OR.
e If the condition are combined using the connector AND, then both conditions must
be true for the combined condition to be true.
e If the connector OR is used to combine any two conditions, then only one of the
conditions needs to be true for the combined condition to be considered true.

e |f neither condition is true, then the combined condition is considered false.

i. Example of program using && (AND) selection

#include <iostream.h>
#include <conio.h>

int number = 2;
void main ()
{ if (number > © && number % 2 == 0)
cout << "Number is positive and even";
else
cout <<“Number is negative and odd” H
getch();
}

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

ii. Example of program using || (OR)

#include <iostream.h>
#include <conio.h>

int number = 2;
void main ()
{ if (number > @ || number % 2 == 9)
cout << "Number is positive or even";
else
cout << “Number is negative and odd”;
getch();
}

3. Multiway Selection
a. Linear nested if statement
e Linear IF statement is used when a field is being tested various values and a
different action is to be taken for each value.
e This form of nested IF is called linear because each ELSE immediately follows the IF
condition to which it corresponds,
e Comparisons are made until next ELSE statement is reached.
o There are an equal number of IF and ELSE statements.
e Syntax: if (condition1l)
Statementl
else if (condition2)
Statement2

else
Statement3

e Example program:

#include <iostream.h>
#include <conio.h>

void main()
{ double balance, interestRate;

cout << "\n What is your balance? ";
cout << "\n Balance RM ";
cin >> balance;

if (balance > 5000.00)
dividendRate = 0.07;
else if (balance >= 2500.00)
dividendRate = 0.05;
else if (balance >= 1000.00)
dividendRate = 0.03;
else
dividendRate = 0.00;

cout << "\n Your interest rate is RM " << dividendRate ;

getch();
}

References
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

b. Non-linear nested if statement
e A non-linear nested IF occurs when a number of different conditions need to be
satisfied before a particular action can occur,
e It called non-linear because the ELSE statement may be separated from the IF
statement with which it is paired.

e Each ELSE statement should be aligned with the IF condition to which it

corresponds.
e Syntax: if (conditionl)
if (condition2)
Statementl
else
Statement2

e Example of program:

#include <iostream.h>
#include <conio.h>

void main()
{ char gender;
int age;
double policyRate;

cout << "\n What is your gender and age? ";
cout << "\n gender (M|F) ";

cin >> gender;

cout << "\n age ";
cin >> age;

if (gender == 'M' || gender == 'm")
if (age < 21)
policyRate = 0.05;
else
policyRate = 0.035;
else if (gender == ‘F’ || gender == ‘f’)
if (age < 21)
policyRate = 0.04;
else
policyRate = 0.03;
cout << "\n Your policy rate is RM

<< policyRate;

getch();
b

4. Compound (Block of) Statement for Selection Structure
a. Why compound statement
e Theif and if...else structures control only one statement at a time.
e Suppose you want to execute more than one statement if the expression in an if or
if...else statement evaluates to true, C++ provides a structure called compound

statement or a block of statements.

References
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

e A compound statement consist of sequence of statements enclosed in curly braces,
{and }.

e Inanin if or if...else structure, a compound statement functions as if it was a single
statement.

e A compound statements takes the following syntax form:

if (conditionl)

{ statementl
statement2
statementn

}

b. Example of program for compound statement

#include <iostream.h>
#include <conio.h>

void main()
{ char gender;
int age;
double policyRate;

cout << "\n What is your gender and age? ";
cout << "\n gender (M|F) ";

cin >> gender;

cout << "\n age ";
cin >> age;

if (gender == 'M' || gender == 'm')
{
if (age < 21)
{ policyRate = 0.05;
cout << "\n Your policy rate is RM

<< policyRate;

¥
else
{ policyRate = 0.035;
cout << "\n Your policy rate is RM " << policyRate;
¥
}
else if (gender == ‘F’ || gender == ‘f’)
{
if (age < 21)
{ policyRate = 0.04;
cout << "\n Your policy rate is RM " << policyRate;
¥
else
{ policyRate = 0.03;
cout << "\n Your policy rate is RM " << policyRate;
¥
else
{ cout << “Unidentified code”;
¥
getch();
¥

10

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

Multiway Selections (Switch statement)

e switch statement is an alternative method for multiple selections.
e Itis often used to replace the nested if statement to avoid confusion of deeply nested ifs.
e switch statement only evaluates an integer expression or a character constant value.
e Syntax form:
switch (expression)
{
case valuel: statementl;
break;
case value2: statement2;
break;
case valueN: statementN;
break;
default: default statement; //optional
}
e Flowchart
expression
v v v v
valuel value2 valueN default
A
A \ 4 y
statementl Statement2 statementN default
statement
A y y
break break break
\ 4 y v v
References:

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

11

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

Comparison of if and switch statement

1. Using integer expression

if-else statement

switch statement

#include <iostream.h>
#include <conio.h>

void main()

{ int code;
cout << “Enter code (1,
cin >> code;

2, 3 or 4):”

if (code == 1)

cout << “Diploma in Computer Science”;
else if (code == 2)

cout << “Diploma in Accountancy?”;
else if (code == 3)

cout << “Diploma in Business Study”;
else if (code == 4)

cout << “Diploma in Banking”;
else

cout << “Error in filling code”;
cout << “\n End of Program.”;

getch();
b

#include <iostream.h>
#include <conio.h>

void main()

{ int code;
cout << “Enter code (1, 2, 3 or 4):”
cin >> code;

switch (code)

{
case 1 : cout << “Diploma in Computer Science”;
break;
case 2 : cout << “Diploma in Accountancy”;
break;
case 3 : cout << “Diploma in Business Study”;
break;
case 4 : cout << “Diploma in Banking”;
break;
default : cout << “Error in filling code”;
}
cout << “\n End of Program.”;
getch();
}

2. Using character constant

if-else statement

switch statement

#include <iostream.h>
#include <conio.h>

void main()

{ char code;
cout << “Enter code (G, Y, or R):”
cin >> code;

if (code == ‘G’|| code == ‘g’)

#include <iostream.h>
#include <conio.h>

void main()

{ char code;
cout << “Enter code (G, Y, or R):”
cin >> code;

switch (code)

cout << “GREEN”; {
else if (code == Y’ || code == ‘y’) case ‘G’ :
cout << “YELLOW”; case ‘g’ : cout << “GREEN”;
else if (code == ‘R’ || code == ‘r’) break;
cout << “RED”; case ‘Y’ :
else case ‘y’ : cout << “YELLOW”;
cout << “Error in filling code”; break;
cout << “\n End of Program.”; case ‘R’ :
case ‘r’ : cout << “RED”;
getch(); break;
} default : cout << “Error in filling code”;
}
cout << “\n End of Program.”;
getch();
)i

String Comparison

12

References

Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

CSC128 — FUNDAMENTALS OF COMPUTER PROBLEM SOLVING
Chapter 3: Selection Control Structure

e |n C++, c-strings are compared character-by-character using the system’s collating sequence.
e Predefined function that can be used in C++ to compare c-string is strcmp().

Format Effect

strcmp(sl, s2) | e Returnsavalue<O0 (-)if sl lessthan s2

e Returns 0if s1and s2 are the same

e Returns avalue >0 (+) if s1is greater than s2

e Assume that you use the ASCII character set.
i. The c-string “Air” is less than the c-string “boat” because the first charter of “Air” is less
than the first character of “Boat”.
ii. The c-string “Air” is less than c-string “An” because he first character of both string are
the same, but the second character ‘i’ of “Air” is less than the second character ‘n’
of “An”.
iii. The c-string “Bill” is less than the c-string “Billy” because the first four characters of
“Bill” and “Billy” are the same, but the fifth character of “Bill”, which is \0’ (the null
character), is less than the fifth character of “Billy”, which is ‘y’.
iv. The c-string “Hello” is less than “hello” because the first character ‘H’ of the c-string
“Hello” is less than the first character ‘h’ of the c-string “hello”.
e Example

#tinclude <iostream.h>
#include <string.h>

int main()

{
char stri[20], str2[20];

cout << “\nEnter first string *’;
cin >> stri;
cout << “\nEnter second string ”’;
cin >> str2;

if (strcmp(strl, str2) == 0)

cout << “Both string are identical”;
else if (strcmp(strl, str2) > 0)

cout << “First string is greater than the second string”;
else if (strcmp(strl, str2) < 0)

cout << “First string is less than the second string”;

return 0;

}

13

References:
Rosenah A. H., (2009), Introduction to Programming with C++, for Scientists and Engineers, UPENA UiTM Shah Alam
Norizan M., Mazidah, P., (2006), Problem Solving with C++, UPENA UiTM Shah Alam

